Preliminary communication

PHOSPHORUS-BRIDGED RHODIUM CLUSTEKS
 II*. SYNTHESIS AND CHARACTERIZATION OF $\mathbf{R h}_{4}\left(\mu-\mathbf{P P h}_{\mathbf{2}}\right)_{4}(\mathbf{C O})_{5}\left(\mathbf{P P h}_{3}\right)$

J.D. JAMERSON*, R.L. PRUETT, E. BILLIG and F.A. FIATO
Chemicals and Plastics Division, Union Carbide Corporation, South Charleston, West Virginia 25303 (U.S.A.)

(Received April 2nd, 1980)

Summary

Decomposition of $\mathrm{RhH}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}(\mathrm{Ph}=$ phenyl $)$ in nonane at $120^{\circ} \mathrm{C}$ under $\mathrm{CO} / \mathrm{H}_{2}$ yielded a dark brown compound. The compound was established at $\mathrm{Rh}_{4}\left(\mu-\mathrm{PPh}_{2}\right)_{4}(\mathrm{CO})_{5}\left(\mathrm{PPh}_{3}\right)$ by X-ray crystallography, the structure bears certain similarities to that of $\mathrm{Rh}_{3}\left(\mu-\mathrm{PPh}_{2}\right)_{3}(\mathrm{CO})_{3}\left(\mathrm{PPh}_{3}\right)_{2}$.

The thermal decomposition of $\operatorname{IrH}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}$ produced trans- $\mathrm{Ir}_{2}\left(\mu-\mathrm{PPh}_{2}\right)_{2}-$ $(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ which contains an iridium-iridium double bond [1, 2]. In contrast, the thermal decomposition of $\mathrm{RhH}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}$ yielded the novel triangular complex, $\mathrm{Rh}_{3}\left(\mu-\mathrm{PPh}_{2}\right)_{3}(\mathrm{CO})_{3}\left(\mathrm{PPh}_{3}\right)_{2}$ [3].

As part of a study of the chemistry of $\mathrm{RhH}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}$, a suspension of the hydride in nonane was heated at $120^{\circ} \mathrm{C}$ under $60 \mathrm{psig} \mathrm{CO} / \mathrm{H}_{2}(1 / 1)$ overnight to produce a suspension of brown solids. A high pressure liquid chromatogram of these solids (on Waters μ-Porasil using 20 percent THF in hexane) indicated that I was obtained with only small amounts of impurities. The infrared spectrum of I exhibited bands at 1980,1840 , and $1800 \mathrm{~cm}^{-1}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ indicating the presence of both terminal and bridging CO ligands. No structural information could be derived from the very complex ${ }^{31} P\left\{{ }^{1} H\right\} N M R$ spectrum of I. Consequently, the compound was characterized by X-ray crystallography.

Crystals suitable for a stuctural determination were obtained from a $\mathbf{C H}_{2} \mathbf{C l}_{2}$ / hexane solution. I crystallized in the monoclinic space group, $P 2_{1} / c: a 17.586(7)$ $\AA ; b 14.438(9) \AA ; c 25.259(8) \AA ; \beta 97.08(3)^{\circ} ;$ and $Z=4 * *$. The 3418 unique reflections with $F_{0}^{2}>3 \sigma\left(F_{0}^{2}\right)$ were used to solve the structure. The positions of the four rhodium and five phosphorus atoms were located by direct methods.

[^0]Positions of the remaining non-hydrogen atoms were located in succeeding difference Fourier syntheses. The rhodium and phosphorus atoms were refined with anisotropic temperature factors, and the other non-hydrogen atoms with isotropic temperature factors; $R=0.067$. Thus, I was determined to be $\mathrm{Rh}_{4}\left(\mu-\mathrm{PPh}_{2}\right)_{4}(\mathrm{CO})_{5}\left(\mathrm{PPh}_{3}\right)^{*}, * *$.

The structure of (Fig .1) is based on a pseudo-tetrahedron of rhodium atoms. Three of the rhodium atoms ($\mathrm{Rh}(1)-\mathrm{Rh}(3)$) are bridged by diphenylphosphide ligands $(P(1), P(2)$, and $P(4))$. Qualitatively, $P(2)$ and $P(4)$ are coplanar with $\mathrm{Rh}(1)-\mathrm{Rh}(3)$, while $\mathrm{P}(1)$ is considerably out of that plane. This arrangement is quite similar to that of the $\mathrm{Rh}_{3} \mathrm{P}_{3}$ skeleton of $\mathrm{Rh}_{3}\left(\mu-\mathrm{PPh}_{2}\right)_{3}-$ $(\mathrm{CO})_{3}\left(\mathrm{PPh}_{3}\right)_{2}$ [3]. The fourth rhodium atom ($\mathrm{Rh}(4)$) is directly bonded to each of the three other rhodium atoms, to two bridging CO's, a diphenylphosphide, $(\mathrm{P}(3))$, and to a PPh_{3} molecule $(\mathrm{P}(5)$). The compound has a total of 36 valence electrons, so each rhodium atom satisfies the 18 -electron rule. Rhodi-um-rhodium bond lengths vary from 2.771 (2) to 2.903(2) \AA (2.844, ave.) and are consistent with those previously reported [3, 4]. Rhodium-diphenylphosphide bond lengths vary from $2.253(5)$ to $2.323(6) \AA$ and agree well with those found in $\mathrm{Rh}_{3}\left(\mu-\mathrm{PPh}_{2}\right)_{3}(\mathrm{CO})_{3}\left(\mathrm{PPh}_{3}\right)_{2}$ [3].

Meek and Kreter [5] have recently reported the synthesis and characterization of an anionic cluster, $\mathrm{Rh}_{4}\left(\mu-\mathrm{PPh}_{2}\right)_{5}(\mathrm{CO})_{6}{ }^{-}, \mathrm{Li}(\mathrm{THF})_{4}{ }^{+}$.

Further chemical and spectroscopic studies are in progress and will be reported later.

[^1]

Fig. 1. ORTEP Drawing of $\mathrm{Rh}_{4}\left(\mu-\mathrm{PPh}_{2}\right)_{4}(\mathrm{CO})_{5}\left(\mathrm{PPh}_{3}\right)$. For sake of simplicity only the carbon atoms bonded to phosphorus in the PPh_{3} and $\mu-\mathrm{PPh}_{2}$ ligands are shown. The main bond lengths (in A$)$ are: $\mathrm{Rh}(1)-\mathrm{Rh}(2)$, 2.771(2): Rh(1)-Rh(3), 2.853(2):Rh(2)-Rh(3). 2.815(2);Rh(1)-Rh(4), 2.897(2):Rh(2)-Rh(4), $2.827(2) ; \operatorname{Rh}(3)-R h(4), 2.903(2) ; R h(1)-P(1), 2.315(5) ; R h(1)-P(2), 2.287(6) ; R h(2)-P(1), 2.293(5):$ $\operatorname{Rh}(2)-P(4), 2.253(5) ; \operatorname{Rh}(3)-P(2), 2.306(5) ; R h(3)-P(4), 2.320(5) ; R h(1)-P(3), 2.323(6) ; R h(4)-P(3)$, 2.288(5); and Rh(4)-P(5), 2.279(6).

References

1 R. Mason, I. Sotofte, S.D. Robinson, and M.F. Uttley, J. Organometal. Chem., 46 (1972) C61.
2 R.L. Bellon, C. Benedicenti, G. Caglio, and M. Manassero, J. Chem, Soc. Chem. Commun., (1973) 946.

3 E. Billig, J.D. Jamerson, and R.L. Pruett, J. Organometal, Chem., submitted.
4 P. Chini, V. Albano, and G. Longoni, Advan. Organometai. Chem., 14 (1977) 285.
5 P.E. Kreeter.Jr. and D.W. Meek, 11 th Central Regional Meeting of the American Chemical Society, Columbus. Ohio, May 1979, INOR 4.

[^0]: *Ref. 3 is Part 1 of this series.
 **The X-ray crystal structure determination was carried out at Molecular Structure Corp., College Station, Texas, using an Enraf-Nonius CAD4 automated diffractometer and the Enraf-Nonius Structure Determination Package on a PDP $11 / \underline{1} 5$ computer.

[^1]: * A black prismatic erystal measuring approximately $0.07 \times 0.2 \times 0.3 \mathrm{~mm}$ was sealed in a thin-walled glass capillary under nitrogen. The capillary was then mounted on Molecular Structure Corporation's Enraf-Nonius CAD4 fully-automated diffractometer. The crystal diffracted well; peak widths at halfheight for several intense reflections (ω-scans) were 0.2°.

 The automatic centering and autoindexing procedure of the Enraf-Nonius Structure Determination Pachage indicated a primitive monoclinic cell. The space group was determined to be $P 2$, $/ c$ by the extinctions $h O l,(l \neq 2 n)$ and $0 k O(k \neq 2 n)$.

 Data were collected at $23 \pm 1^{\circ} \mathrm{C}$ using a graphite-crystal monochromator: Mo-K \boldsymbol{K}_{α} radiation and the $\theta-20$ scan technique were used. Peak intensities were recorded using scan rates from 4 to 20° fmin and a scan range from $2 \theta\left(\mathrm{Mo}-K_{\alpha_{1}}\right)-0.6^{\circ}$ to $2 \theta\left(\mathrm{Mo}-K_{\alpha_{2}}\right)+0.6^{\circ}$. A total of 12129 unique reflections were collected in the $0^{\circ}<2 \theta<45^{\circ}$ region of which 3418 had $F_{o b s}{ }^{2}>3 \sigma^{\circ}\left(F_{o b s}{ }^{2}\right)$. Three standard reflections were measured periodically during data collection; no significant changes were observed. No absorption correction was applied in view of the small linear absorption coefficient $-11.67 \mathrm{~cm}^{-1}$. The unique data were reduced to a set of relative $F_{o b s}{ }^{2}$ after Lorentz and polarization corrections were made.
 **A table of atom positional and thermal parameters and the table of stucture factors have been deposited as NAPS, Document No. 03683 (19 pages). Order from ASIS/NAPS, c/o Microfiche Publications, P.O. Box 3513, Grand Central Station. New York, N.Y. 10017 . A copy may be secured by citing the document number, remitting $\$ 5.00$ for photocopies or $\$ 3.00$ for microfiche. Advance payment is required. Make checks payable to Microfiche Publications.

